
Conditional Speculation: An Effective Approach to Safeguard Out-of-Order
Execution Against Spectre Attacks

Peinan Li†, Lutan Zhao†, Rui Hou†∗, Lixin Zhang‡ and Dan Meng†
†State Key Laboratory of Information Security, Institute of Information Engineering, CAS

and University of Chinese Academy of Sciences. Email: {lipeinan, zhaolutan, hourui, mengdan}@iie.ac.cn
‡Institute of Computing Technology, CAS. Email: zhanglixin@ict.ac.cn

Abstract—Speculative execution side-channel vulnerabilities
such as Spectre reveal that conventional architecture designs
lack security consideration. This paper proposes a software
transparent defense mechanism, named as Conditional Spec-
ulation, against Spectre vulnerabilities found on traditional
out-of-order microprocessors. It introduces the concept of
security dependence to mark speculative memory instructions
which could leak information with potential security risk.
More specifically, security-dependent instructions are detect-
ed and marked with suspect speculation flags in the Issue
Queue. All the instructions can be speculatively issued for
execution in accordance with the classic out-of-order pipeline.
For those instructions with suspect speculation flags, they are
considered as safe instructions if their speculative execution
will not refill new cache lines with unauthorized privilege
data. Otherwise, they are considered as unsafe instructions
and thus not allowed to execute speculatively. To reduce the
performance impact from not executing unsafe instructions
speculatively, we investigate two filtering mechanisms, Cache-
hit based Hazard Filter and Trusted Page Buffer based Hazard
Filter to filter out false security hazards. Our design philosophy
is to speculatively execute safe instructions to maintain the
performance benefits of out-of-order execution while blocking
the speculative execution of unsafe instructions for security
consideration. We evaluate Conditional Speculation in terms of
performance, security and area. The experimental results show
that the hardware overhead is marginal and the performance
overhead is minimal.

Keywords-Spectre vulnerabilities defense; Security depen-
dence; Speculative execution side-channel vulnerabilities;

I. INTRODUCTION

Speculative and out-of-order execution are fundamental
techniques to exploit instruction level parallelism (ILP) in
modern high performance processors. In typical handling
of mis-speculation, the pipeline states, such as integer and
floating registers, are rolled back to the fault instruction-
s. However, some microarchitecture states, such as cache
contents, are usually not reverted, since such negligence
does not violate the architectural semantics. Unfortunately,
recently exposed Spectre and Meltdown, which are of spec-
ulative execution side-channel vulnerabilities, have revealed
the security hazards of neglecting those unrecovered micro-
architectural states [1], [2], [3], [4], [5]. Attacks exploit-
ing speculative execution vulnerabilities usually induce a
victim to speculatively perform operations that would not

Corresponding author: Rui Hou(hourui@iie.ac.cn)

occur during correct program execution, but when occurring
would leak the victim’s confidential information via a side
channel to the adversary. Speculative execution vulnerabil-
ities become a serious threat to commodity systems since
speculative execution is widely adopted in most modern
microprocessors [6], [7].

Industrial researchers have responded rapidly to mitigate
these threats [8], [9], [10], [11]. Retpoline, proposed by
Google, converts indirect jump instructions into a blocking
loop that combines return instructions to avoid unsafe specu-
lative execution [12]. Intel has provided multiple microcode
updates for their products and software developers can
invoke specific instructions to enable different granularities
of defense mechanisms to avoid interferences with the
branch predictor between applications running at different
privilege levels [13]. Various isolation mechanisms, such as
KAISER and Site Isolation, are developed to shutdown the
observable channel between security domains [14]. Although
they effectively ease the security tensions, most existing
mitigation techniques are software-based and more or less
sacrifice transparency and/or performance.

To strike a balance between security, performance and
transparency, it is essential to innovate the microarchitecture
design to safeguard the speculative execution. On March 15,
2018, Intel reported that its newly redesigned processors
released later in 2018 will protect against Meltdown and
related Spectre vulnerabilities (especially, Meltdown and
Spectre-V2) [13]. To date, there has been no widely accepted
hardware solution for defending Spectre variants. This paper
focuses on the microarchitecture design innovations against
the major variants of Spectre (Spectre-V1, V2, V4 and
SpectrePrime). More specifically, our work concentrates
on vulnerabilities associated with branch speculation and
memory access speculation. Overall, this paper makes the
following contributions:

• We first propose the concept of Security Dependence.
Similar to data dependence and control dependence,
this kind of new dependence is used to depict the
speculative instructions which leak micro-architecture
information with potential security risk.

• An effective and software transparent defense mecha-
nism against Spectre vulnerability, named as Condition-
al Speculation, is proposed for generic microprocessors.
Specially, Security Hazard Detection is introduced in

the Issue Queue to identify suspected unsafe instruc-
tions with security dependence. Once the real hazards
are confirmed at the execution stage, those unsafe
speculative execution will be terminated and discarded
using existing re-execution and speculation recovery
mechanisms.

• Two filtering mechanisms are investigated to figure
out falsely identified security hazards, with the goal
of pursuing a balance of performance, security and
transparency. The proposed Cache-hit based Hazard
Filter targets at the speculative instructions which hit
the cache. Since their speculative execution will not
change cache (content), they are safe. Another pro-
posed filter, Trusted Page Buffer based Hazard Filter
(TPBuf), identifies safe speculative instructions from
another perspective. For our targeted Spectre variants
that use the shared memory (e.g, Flush+Reload) based
cache side channel and steal memory page information,
their speculative execution of malicious gadgets have a
common feature named as S-Pattern. TPBuf is designed
to capture S-Pattern from all speculative executions.
For any speculative executed memory instructions, it
is considered as safe if it does not match the S-Pattern.

The next section contains a brief description of Spectre.
Section 3 presents the threat model. The concept of security
dependence is introduced in section 4. And Section 5 intro-
duces the mechanism of Conditional Speculation. Section 6
is the evaluation. Section 7 is the discussion. And Section 8
contains related works. Section 9 concludes this paper.

II. UNDERSTANDING THE SPECTRE ATTACKS

Spectre attacks usually trick the processor into spec-
ulatively executing instruction sequences that should not
have been executed under correct program execution. By
influencing which instructions are speculatively executed,
this kind of attacks are able to use a side channel to
transmit/leak victim’s information out. The typical Spectre
attacks have three common key steps listed as below.

A. Induce victim to incorrect speculative execution path

There are two major approaches in Spectre attacks to
induce victim to incorrect speculation.

Branch speculation. Branch prediction is one of major
speculative execution techniques [1], [2], [4], [5], [15].
Through purposeful training of the branch predictors, an
adversary can change the control flow to incorrect specu-
lative execution path to access the unauthorized data. Some
processors use static branch predictor, which makes it much
easier for attacker to construct mis-speculative execution.
What’s more, complete process- or thread-level isolation
is rare in branch predictor for existing high-end processor
cores. It makes cross-process or cross-thread attacks feasible.

Memory speculation. Another possible approach to in-
ducing speculative execution is load speculation [4], [10].

Load instruction is usually allowed to be speculatively
executed even if the address of its older store instruction
is unknown. Attackers can exploit such design to induce
the load instruction to speculatively access sensitive data
illegally.

B. Construct a long time window for incorrect speculative
execution

To gather enough and stable information of the incorrect
speculation, a long timing window is essential for the
adversary. There are several ways to achieve this, and we
introduce two classic approaches.

Delinquent memory accesses. The attacker can use cache
line flush instruction or other ingenious methods to evict
their source operands into off-chip memory [1], [2], [4],
[5], [10]. Such delinquent memory access will hold the
predicated instruction a long time in Issue Queue due to
unready source operand.

Long dependence chain. Constructing a long data de-
pendence chain for computing source operands can also be
used to provide longer timing window for stable speculative
executions [16].

C. Infer secrets from side-channel information leakages

The incorrect speculative execution might leave traces
which can be observed by some side-channel methods.
As a widely used method now, cache side-channel attack
exploits the time difference of memory accesses to deduce
whether a victim process has loaded a specific cache line
or not, and then infer the offset address or execution
path. There are many well-studied cache side-channel at-
tacks, including Flush+Reload [17], [18], Prime+Probe[19],
Evict+Reload[20], Flush +Flush [21] and Evict+Time [22].

III. THREAT MODEL

We have following assumptions on attacker. She can
execute her codes on the same machine with victim process
without elevated privileges. And it is possible for the attacker
to know the source codes and address layout of the victim
process/thread.

This paper aims at a large class of representative, realistic,
and dangerous Spectre attacks. They steal victim’s memory
contents instead of the value of registers (Note that stealing
memory contents is perhaps more dangerous than stealing
register values), and they rely on the shared memory to
construct the cache side channel between the attacker and
the victim to leak the information (Note that this is more
realistic and efficient than other forms of side channels). We
define the above defense scope primarily for the following
reasons:
1) The community has not yet found a way to enumerate all

the possible side channels. In theory, many choices are
possible for the side-channel component. Thus it should
be noted that Spectre does not restrict itself to cache

side channel only. However, identifying the existence
of a side channel is only the first, small step towards
mounting highly successful attacks. Compared with other
side channels, cache side channel seems much more
mature and efficient, and has been widely used in most
of known Spectre variants.

2) There are two major types of methods to construct
the cache side channel: shared memory based approach
and eviction set based approach. Shared memory based
approach, such as Flush+Reload, Flush+Flush and Evict+
Reload, takes advantage of shared pages between the
attacker and the victim. Eviction set based approach, such
as Prime+Probe and Evict+Time, monitors the states of
a eviction cache set carefully selected by the adversary
without sharing any contents. Since it is much more con-
venient to monitor the fine-grained cache status, shared
memory based approach has higher resolution [23]. Fur-
thermore, shared memory based approach does not suffer
from false positives, complex processing for detecting
access and frequently interrupts [24]. Consequently, it is
not only more powerful but also more dangerous, which
is widely employed in existing Spectre variants.

Note that while we limit our discussion to this threat model
in this paper, the basic architecture can be adjusted for
expanded threat model. We leave that as future work.

IV. SECURITY DEPENDENCE AND DEFENSE STRATEGY

A. Definition of Security Dependence

Security is a complex issue. In this paper, we focus on the
type of problems caused by side-channel vulnerabilities ex-
ploited by Spectre. These are essentially micro-architecture
information leakages due to mis-speculation. To help capture
the problems caused by unsafe speculative execution, we
introduce the concept of Security Dependence.

Instruction j is security-dependent on Instruction i with
respect to leakage channel c if both conditions hold:

• i precedes j in program order.
• If j is speculatively executed ahead of i, j will leakage

information into channel c.

Note that since leakage happens in a variety of channels,
security dependence is defined with respect to the particular
channel. In this paper, we focus on cache (content) side
channels. In other words, if j does not change cache content,
then it does not have a security dependence with respect to
cache content channel and we consider it to be safe in this
paper – even though its speculative execution definitely leaks
some information into the universe.

Given the above definition, Table I summarizes the
major security dependence in Spectre vulnerabilities. The
security dependence in Spectre vulnerabilities come from
two situations, including memory-memory speculation and
branch-memory speculation.

Table I: Security dependence in Spectre vulnerabilities

Variants Instruction i Instruction j
Spectre V1 conditional branch memory access
Spectre V2 indirect branch memory access
Spectre V4 memory access memory access
SpectrePrime conditional branch memory access

Security dependence under memory-memory specu-
lation: One example is the Proof-of-Concept (PoC) X86
assembly code piece of Spectre V4 in Listing 1, which
exploits speculative store bypass (also named as load specu-
lation) [25]. Instruction 1 (i1 hereafter) is a store operation,
and i4 is a load operation. Assuming these two instructions
access the same memory address, there is a RAW depen-
dence. The attacker might construct an environment in which
i1 is pending in the issue queue and i4 is speculatively
launched for accessing unauthorized sensitive data. Once the
address of i1 is known, the load mis-peculation occurs and
the incorrect execution results of i4 need to be discarded.
However, the sensitive data have already been refilled into
L1 cache, such information leakage allows attacker to infer
the sensitive data. Therefore we say i4 is security dependent
on i1.

1 mov [r d i + r c x] , a l ; unsolved s to re
2 movzx r8 , b y t e [r s i + r c x] ; unsafe load
3 s h l r8 , b y t e 0 xc ; s h i f t e d as a index
4 mov eax , [rdx + r8] ; dependent load

Listing 1: PoC Code piece of Variant 4: Speculative Store
Bypass

1 Loop :
2 mov r d i , −0x8 (rbp) ;
3 mov 0 x200a54 (r i p) , eax ;
4 mov eax , eax
5 cmp −0x8 (rbp) , r a x ; cache miss
6 j b e 40063 f <Loop> ; unresolved branch
7 mov −0x8 (rbp) , r a x ; unsafe load
8 add 0 x601080 , r a x ; i n d i r e c t index
9 . . .

Listing 2: PoC Code piece of Variant 1: Bounds Check
Bypass

Security dependence under branch-memory specula-
tion: In case of Spectre V1 in Listing 2. In attacker’s well-
designed environment, the branch i6 stays in the issue phase,
and the i7 is speculatively executed ahead of time to access
unauthorized sensitive data. As with the previous scenario,
the cache contents are changed in such mis-speculation and
the sensitive data might be inferred out via cache side-
channel attack. According to our definition, i7 is security
dependent on i6.

B. Defense Strategy

Speculation and cache side-channel information leakages
are critical factors for a successful Spectre attack. A straight-
forward defense policy is to prohibit any speculation of

memory instructions. However, speculation is a fundamental
performance boost technique in modern microprocessors.
Disabling speculative execution has severe negative perfor-
mance impacts and is not a practical option in most cases.
In addition, not all speculative memory access instructions
pose risk of leaking important information. We therefore
propose a defense strategy that supports speculative exe-
cution but is capable of blocking speculative instructions
with security dependence. This approach can lead to a
desirable trade-off between performance and security. In the
meantime, we also strive to keep it practical by maintaining
acceptable implementation cost and complexity.

V. CONDITIONAL SPECULATION MECHANISM

A. Design Overview

This section proposes a generic design of core microarchi-
tecture enforcing security dependence as shown in Figure 1.
The security hazard detection module is integrated into
the issue queue to identify the security dependent memory
access instructions. These instructions are tagged with the
suspect speculation flags, which indicate they POSSIBLY
change cache contents due to mis-speculation. Then they
will be speculatively issued for execution once their data
dependence are cleared.

For those instructions with suspect speculation flags,
they are considered as safe instructions if their speculative
execution WILL NOT refill new cache lines with unau-
thorized privilege. Otherwise, they are unsafe instructions.
Mentioned in the above section, our design philosophy
is to speculatively execute safe instructions to maintain
the performance benefits of out-of-order execution while
blocking the speculative execution of unsafe instructions for
security consideration. We propose two filtering mechanisms
to figure out false security hazards and to decide whether
the instruction with suspect speculation flag is safe or not,
with the goal of pursuing a balance of performance and
security. The proposed Cache-hit based Hazard Filter targets
the speculative instructions which hit the cache without
any cache (content) side-channel information leakage. And
Trusted Page Buffer based Hazard Filter identifies safe
speculative instructions from another perspective. For our
targeted Spectre variants that use the shared memory based
cache side channel and steal memory page information, their
speculative execution of malicious gadgets have a common
feature named as S-Pattern. TPBuf is designed to capture S-
Pattern from all speculative executions. For any speculative
executed memory instructions, it is considered as safe if it
does not match the S-Pattern. The instructions that survive
the filtering are allowed to be aggressively speculated, there-
by obtaining better performance in the context of security.

B. Security Hazard Detection in Issue Queue

We design the security detection logic based on bit matri-
ces as shown in Figure 2. Bit-matrix is a popular way used

by some commodity processors to track data dependence and
age information [26], [27], [28]. Conventionally, the data de-
pendence matrix and age matrix together can determine the
instruction(s) to be issued. With security detection module,
the security dependence matrix also must determine if an
instruction to be issued has any security dependence.

Matrix organization: Security dependence matrix needs
to efficiently support both row and column access. Assuming
that the Issue Queue has N items, the security dependence
matrix will contain a register array of NxN bits. It is
indexed by IQPos (Issue Queue Position). The number of
read ports of this matrix is equal to the dispatch width, and
the number of write ports is equal to the issue width. Given
any Instruction X, IQPos X denotes its location in the Issue
Queue. If the value of the Matrix[IQPos X, IQPos Y] is 1,
X has security dependence on Y. Otherwise, it means there
is no security dependence between them.

Matrix initialization: When the new instruction X is
dispatched into the Issue Queue, one entry is allocated with
the index IQPos X. For each Instruction Y which is valid in
the Issue Queue at this moment, Matrix[IQPos X,IQPos Y]
is computed according to the following formula.

Matrix[X,Y] =(IssueQ[X].opcode == MEMORY)

&(IssueQ[Y].opcode == MEMORY orBRANCH)

&IssueQ[Y].valid

&!IssueQ[Y].issued

This formula is based on the following logic to determine
the security dependence between instructions. First, if Y is
valid before X is dispatched into Issue Queue, it means Y
precedes X. Second, for Spectre variants, we check only
if a memory instruction is security-dependent on previous
branch or memory instructions. Third, if preceding branch
or memory instructions are still waiting in the Issue Queue
when a memory instruction is issued, this memory instruc-
tion will be considered to have security dependence.

Hazard detection: Figure 2 illustrates the three stage
options of the Issue Queue. At the 1st stage, the data
dependence matrix generates a dependence vector. At the
2nd stage, this vector is then sent to the age matrix to
select the oldest ready instruction to be issued. At the
3rd stage, for those instructions selected to be issued, the
security dependence matrix is queried to get their security
dependence, and then the states of corresponding entries of
Issue Queue are updated. In particular, bits in each row
of the security dependence matrix are processed by OR
operation and the result demonstrates whether there is a
potential security hazard. When one instruction is selected
to be issued and a security hazard is detected, it will be
tagged with suspect speculation flag.

Dependence clearance: After one instruction X is issued,
the corresponding bit in Update Vector Register will be set
as 0. The column of security dependence matrix indexed
by IQPos X will be reset at the next cycle. Such operation

Figure 1: The microarchitecture overview of Conditional Speculation mechanism

Figure 2: Security Hazard Detection based on Security Dependence Matrix

means that the security dependence between corresponding
instructions and X are cleared.

C. Cache-hit based Hazard Filter

A straightforward approach of hazard elimination is to
simply block all instructions tagged with suspect speculation
flags in the issue queue. Such a policy obviously would
cause performance degradation. Meanwhile, only memory
requests resulting in a cache miss will change cache content,
and most of applications exhibit good temporal and spatial
locality. Motivated by these two observations, Cache-hit
based Hazard Filter is proposed to reduce the performance
impacts from conservatively not executing instructions with
a suspect speculation flag.

For a memory instruction tagged with a suspect specu-
lation flag, it will be speculatively issued to the memory
access pipeline. If the speculative memory access hits L1
cache, its execution will continue as a normal memory
instruction. However if it encounters a miss in L1 cache,
the missing request will be discarded. A signal is sent
back from L1 cache to Issue Queue that the re-issue logic

Figure 3: Typical instruction flow of malicious gadget for
shared memory (e.g, Flush+Reload) based Spectre attack.

should be applied to the memory instruction until its security
dependence is resolved. These blocked instructions wait in
the issue queue for the security dependence to clear before
being re-issued. This design requires only minimal changes
in the L1 cache control logic: a miss request with suspect
speculation flag will not be processed.

D. Trusted Pages Buffer based Hazard Filter

(1) Motivation
The Cache-hit based Hazard Filter only considers specu-

lative memory instructions that hit in L1 DCache as safe and
allows them to be speculatively executed. For applications
with high L1 DCache miss rates, it will not be able to recover
majority of the benefits of speculative execution. For those
applications, we propose a new hazard filter Trusted Page
Buffer (TPBuf) to detect safe speculation for instructions that
miss in L1 DCache. TPBuf is based on the observation that
not all speculative cache misses can be exploited to construct
speculative side channels.

Based on the threat model defined in Section 3, we focus
on Spectre variants that utilize the shared memory (e.g,
Flush+Reload) paradigm and illegally access memory page
information. As shown in Figure 3, the speculative execution
of malicious gadget is featured as a common memory access
pattern in our targeted Spectre attacks. In particular, it
is observed that the malicious speculative execution flow
always contain two special memory instructions (A and B).
These two instructions have following usages and behaviors.
1) A is used to speculatively access sensitive data. And

B speculatively accesses the memory region shared by
attacker, which is used for building the cache side-
channel between victim and attacker. Since secret data
and memory region used for side-channel usually locate
at different memory pages, these two instructions access
different pages.

2) In order to build a cache side-channel, the attacker needs
to first flush the specific shared memory data. Then, the
induced speculative execution of B has a cache miss and
thus reloads the cache line into L1 DCache. This change
in state information can be perceived by the attacker
through the cache side channel. Thus the cache miss of
B is essential to leak sensitive information over the cache
side channel.

3) B is data-dependent on A. The result of A is used to
calculate the index of shared memory region. Such well-
designed dependence is also another important point for
attacker to infer the secret values.

Motivated by aforementioned observation, we call the
above common characteristic behavior as S-pattern. Specif-
ically, if the instruction sequence of speculative execution
is observed to have the following characteristics, we con-
sider this sequence of speculative instruction has S-pattern
behavior.
1) There are at least two instructions (A and B) which

separately access different memory pages.
2) Instruction B results in an L1 DCache miss.
3) Instruction B has data dependence on instruction A.
4) There may be multiple instructions (computation, mem-

ory or other kind of instructions) between A and B.
Although the malicious gadgets of Spectre attacks are

Table II: Filter strategy for one incoming request.

Query Result Decision
There is at least one valid entry whose request
accesses different memory pages, and this re-
quest is in Writeback status.

UnSafe

Others Safe

featured as S-Pattern behaviors, it should be noted that
the instruction flow with S-Pattern is not necessarily a
Spectre attack. For security reasons, we try to prevent the
formation of speculative instruction flows with S-Pattern at
the micro-architecture level. While ensuring security, such
mechanism also naturally leads to possible performance
losses. In Section 6, we evaluate the performance of this
strategy in detail and analyze the proportion of S-Pattern in
normal programs like SPEC CPU 2006.

(2) Overview of TPBuf design
TPBuf is designed to capture memory access behaviors

with S-Pattern from all speculative executions. It records all
the on-the-fly speculative memory access requests and track
their execution status (e.g., whether the requested cache line
is refilled or not). When a new memory request which misses
the L1 DCache, TPBuf compares its page address with its
history records. And it decides whether this new speculative
instruction is safe based on the logic described in Table II.

(3) Microarchitecture of TPBuf
The microarchitecture of TPBuf is shown in Figure 4. One

main design principle is to utilize the existing logics as much
as possible to reduce the complexity of implementation,
such as avoiding TPBuf to be the new timing critical path
inside the core pipeline. TPBuf is placed close to the Load
Store Queue (LSQ) and its entries have a 1:1 mapping with
the entries of LSQ. The allocation, commit and squash of
TPBuf’s entries are operated along with the movement of the
LSQ’s Head and Tail pointers. In addition, TPBuf covers all
on-the-fly speculative memory instructions in the speculative
execution window. In order to prevent the attacker from
speculatively accessing unauthorized data directly and then
spreading the data to his own memory space, the access ad-
dress must be checked and get physical page number (PPN)
using TLB first. TPBuf records and uses the PPN as the tag
of each entry. In addition, each TPBuf entry stores a mask
and a number of status bits. TPBuf detects the S-Pattern and
passes the results to Cache-hit filter which decides whether
or not a suspect speculative miss request should be blocked.
In this way, the original memory consistency model and
cache coherence are unaffected. Lookup of TPBuf is shown
in Figure 4.

Allocation: When memory access instructions are allo-
cated in LSQ, they also are allocated in TPBuf and A bit is
set. And Mask is generated according to A bits in TPBuf.

Figure 4: The microarchitecture design of TPBuf (PP-
N:physical page number Mask:indicates program or-
der S:suspect speculation W:writeback V:address is valid
A:entry is allocated)

It indicates which memory instructions in TPBuf are older
than the new entry in program order.

Update: The S bit is updated with the suspect speculation
flag attached with the memory instruction. When the PPN
is recorded in TPBuf, the V bit is set. The W is set when
data fetched by the memory instruction become available to
others instructions.

Detection: When an incoming request enters TPbuf, the
TPBuf compares its PPN with the PPN of existing entries
and then generates an address-match vector(Match). These
vectors, including Match,V, W and S, are used as inputs of
the logic of equation 1 to determine whether the requests
are safe. Specially, ‘|’ means reduction OR, which operates
OR on all of the bits in a vector to generate 1-bit output.

safe = ! (|(V & W& S & Match)) (1)

VI. EVALUATION

A. Methodology

We have used the cycle-accurate simulator Gem5 [29] to
model a generic high-performance out-of-order processor.
We simulate the mechanisms of Conditional Speculation to
evaluate the features in terms of security, performance and
area cost. Table III lists the key parameters of the simulated
processor.

Security features are evaluated through analyzing Proof-
of-Concept (PoC) codes. We adopt SPEC CPU 2006 bench-
marks with reference input size for performance evalu-
ation [30]. The simulator is warmed up for one billion
instructions, and then run another billion instructions in
the cycle accurate mode. Finally, the Security Dependence
Matrix is implemented using Register-Transfer Level (RTL)
code and then synthesized and implemented with SMIC
40nm technology for area and timing evaluations.

Experiment environments with different mechanisms of
Conditional Speculation are named in the following abbre-
viations:

Table III: Simulator Configurations.

Parameter Configuration
ISA ALPHA
Frequency 2.5GHz
Processor type 4-way out-of-order
Pipeline 15 stages
Commit Up to 4 instructions/cycle
ROB 192 entries
LDQ 32 entries
STQ 24 entries
Issue Queue 64 entries
ITLB/DTLB 64 entries
L1 ICache 64KB, 4-way, 64B line, 2 cycle hit
L1 DCache 64KB, 4-way, 64B line, 2 cycle hit
L2 Cache 2MB, 16-way, 64B line, 10 cycle hit
L3 Cache 8MB, 32-way, 64B line, 60 cycle hit
Memory 8GB, 192 cycle latency

• Origin: Base out-of-order processor with the configura-
tion listed in Table III, without any security dependence
modules.

• Baseline: Baseline mechanism of Conditional Specula-
tion, which simply considers all the security-dependent
memory accesses as unsafe.

• Cache-hit Filter: The mechanism of Conditional Spec-
ulation with Cache-hit based Hazard Filter.

• Cache-hit Filter + TPBuf Filter: The mechanism of
Conditional Speculation with Cache-hit based Hazard
Filter and Trusted Pages Buffer based Hazard Filter
working together.

B. Security Analysis

Table IV summarizes the security analysis of the pro-
posed three defense mechanisms. The major known Spectre
variants can be divided into six typical scenarios based on
different combinations of cache side-channel attacks and
page sharing mode. The first four are in the scope of
our threat model, and they are our main defensive goals.
Furthermore, we analyze two more scenarios, including
Prime+Probe and Evict+Time.

In the cases of Baseline and Cache-hit Filter, speculative
memory accesses are not allowed to change the cache
state (content). Thus those two mechanisms can ensure the
security of speculative execution. For Cache-hit Filter +
TPBuf Filter, it is able to block the unsafe speculation for the
first four scenarios via dynamically identifying the S-Pattern.
However, S-Pattern is not designed for cache side-channel
attacks which are based on non-shared pages. Therefore,
Cache-hit Filter + TPBuf Filter can not provide secure
solution for the last two scenarios listed in Table IV. It
should be noted that all published PoC codes of existing
Spectre attacks construct side channels based on shared
memory pages, and they can be grouped to: “Flush+Reload,
share data” (Spectre V1, V1.x V2, V4), and “Prime+Probe,

Table IV: Security analysis of three mechanisms of condi-
tional speculation.

Attack Baseline Cache-hit Cache-hit +
Classification Filter TPBuf Filter
Flush+Reload, X X Xshare data
Flush+Flush, X X Xshare data
Evict+Reload, X X Xshare data
Prime+Probe, X X Xshare data
Prime+Probe, X X ×no shared data
Evict+Time, X X ×no shared data

share data” (SpectrePrime). In summary, our mechanism can
defend those known Spectre attack methods.

C. Performance Evaluation

Figure 5 compares the performance impacts of three
different mechanisms of Conditional Speculation. The Base-
line mechanism blocks all speculative memory accesses for
security consideration. Not surprisingly, such conservative
policy causes the largest performance degradation (53.6%
performance degradation on average, and the worst case is
146.8% for hammer). In contrast, Cache-hit Filter provides
a certain degree of relaxation. By dynamically identifying
false security hazards, it allows the memory instructions that
hit L1 DCache to be executed. Such a filter significantly
improves the performance (on average reduce performance
degradation from 53.6% to 12.8%). In particular, Cache-hit
Filter recognizes 89.6% speculative accesses as safe due to
the high L1 DCache hit rate for SPEC CPU benchmarks.
Cache-hit Filter + TPBuf Filter gets further performance
improvements. S-Pattern depicts the memory access pat-
tern with malicious behaviors in Spectre attacks. For any
speculative instruction which misses L1 DCache, if it does
not match S-pattern, it is considered as safe and can still
be speculatively executed. It can be observed that Cache-
hit Filter + TPBuf Filter further reduces the performance
overhead to 6.8% on average.

(1) Performance overhead for conservative blocking
policy

The security dependence comes from two major situa-
tions, including branch-memory speculation and memory-
memory speculation. In order to have a better understanding
on the performance loss, we make in-depth analysis as
below.

We first model a branch-memory dependence matrix
which recognizes speculative memory accesses dependent
on branch instructions as unsafe. It introduces 23.0% perfor-
mance degradation on average. As expected, the more branch

instructions exist, the more speculative memory accesses
will be tagged as unsafe. In addition, high misprediction
rate might further reduce the performance. For the worst
case of astar (65.5% overhead), which has a high branch
misprediction rate (8.5%). Besides, 16.7% instructions are
unresolved branch instructions when they are allocated in
the Issue Queue, and 27.2% memory instructions are marked
as unsafe.

After appending the memory-memory dependence, the
proportion of unsafe speculative memory accesses is in-
creased. More seriously, other instructions that are depen-
dent on these unsafe operations have to be blocked in the
issue queue. Experiments show that some cases are particu-
larly sensitive to memory-memory security dependence. For
example, the performance overhead of lbm increases from
53.5% to 92.4%, and it takes more than 150 times longer to
resolve a branch and pending speculative memory accesses
than the Origin case. As depicted in Table V, the Baseline
policy will block almost 73.6% speculative memory accesses
in correct execution path.

(2) Performance gain for two kinds of filters
Cache-hit Filter: This filter exploits locality of memory

access behaviors of normal workloads. Compared to Base-
line method, Cache-hit Filter improves the performance by
26.6% on average as shown in Figure 5. Take GemsFDTD
in Table V as an example, the cache hit rate is more than
99.9%, and then only 0.1% speculative memory accesses are
recognized as unsafe. In case of lbm, milc and zeusmp, they
have higher L1 DCache miss rate. Thus their performance
improvements brought by Cache-hit Filter are low. Such
analysis is demonstrated in Figure 5. Most of programs in
SPEC CPU 2006 have high cache hit rates, this filter on
average successfully recognizes 89.6% speculative accesses
as safe, and blocks only 3.6% speculative memory accesses
in the correct execution path.

Cache-hit Filter + TPBuf Filter: Besides exploiting the
locality of memory access, the performance improvements
of this mechanism is also related to the proportion of
cache misses which do not match the S-Pattern. For most
cases with high cache hit rates (such as dealII, hmmer and
namd), there is little space for optimization. But for appli-
cations with low speculative cache hit rated, high S-Pattern
mismatch rate denotes that there are large proportions of
safe speculative cache misses, which can be recognized by
TPBuf Filter and executed speculatively as normal. There-
fore, significant performance improvements can be achieved
when TPBuf Filter and Cache-hit Filter are combined. For
instance, lbm has a lower L1 DCache hit rate (61.8%),
and there are 86.2% speculative accesses mismatching S-
Pattern. In this case, Cache-hit Filter + TPBuf Filter cap-
tures those safe speculations and brings 38.1% performance
improvement in comparison with Cache-hit Filter. Another
interesting case is libquantum. Although it has also a lower

Figure 5: Performance evaluation (All the values in this figure are normalized to Origin).

Table V: Filter Analysis (Blocked Rate means the proportion of blocked speculative memory accesses in the correct execution
path).

Benchmark
Origin Baseline Cache-hit Filter Cache-hit Filter + TPBuf Filter
L1 Hit Blocked Blocked Cache Hit Rate of Blocked S-Pattern
Rate Rate Rate Speculative Memory Access Rate Mismatch Rate

astar 94.4% 74.6% 3.3% 90.4% 2.2% 14.5%
bwaves 81.3% 73.0% 5.6% 90.3% 5.5% 1.5%
bzip2 96.7% 77.8% 1.6% 95.5% 1.3% 5.0%
dealII 97.3% 58.7% 0.1% 99.4% 0.1% 15.5%

gamess 96.0% 75.0% 0.5% 98.8% 0.4% 10.8%
gcc 96.2% 79.1% 0.4% 95.3% 0.2% 18.8%

GemsFDTD >99.9% 79.1% <0.1% 99.9% <0.1% 0.2%
gobmk 95.3% 72.5% 1.6% 96.3% 0.2% 39.4%

gromacs 93.8% 71.4% 2.1% 94.8% 1.1% 19.0%
h264ref 99.1% 62.5% 0.3% 98.3% <0.1% 47.0%
hmmer 97.9% 65.4% 0.3% 99.4% 0.3% 2.1%

lbm 61.8% 65.9% 15.8% 60.7% 0.3% 86.2%
leslie3d 95.1% 85.3% 1.6% 96.5% 1.2% 17.2%

libquantum 79.6% 88.4% 1.6% 95.2% 1.6% <0.1%
mcf 73.9% 65.2% 9.3% 75.1% 3.2% 32.6%
milc 66.2% 77.9% 13.0% 67.6% 9.2% 6.3%
namd 97.5% 77.4% 0.2% 99.6% 0.1% 31.9%

omnetpp 92.9% 76.7% 4.4% 78.2% 4.1% 0.8%
sjeng 99.4% 78.1% <0.1% 99.7% <0.1% 11.9%
soplex 84.9% 71.0% 3.3% 82.1% 3.3% 0.3%

sphinx3 97.9% 77.4% 0.3% 96.6% 0.2% 13.1%
zeusmp 55.3% 67.0% 15.0% 61.5% 3.9% 26.9%
Average 88.7% 73.6% 3.6% 89.6% 1.7% 18.2%

cache hit rate (79.6%), more than 99.9% accesses belong to
S-Pattern. These operations are considered unsafe and are
blocked for speculation. Thus the performance benefit from
Cache-hit Filter + TPBuf Filter is limited for libquantum.
On average, this mechanism improves the performance by
5.3% in contrast with Cache-hit Filter.

D. Sensitivity Analysis on the Complexity of Out-of-Order
Core

Three typical processor cores with different complexities
are simulated for sensitivity evaluation. We choose A57-
like configuration for the scenario of mobile processor, Core
I7-like configuration for desktop processor and Xeon E5

Table VI: Parameter Sensitivity Analysis.

Benchmark
A57-like I7-like Xeon-like

Baseline Cache-hit Cache-hit Filter Baseline Cache-hit Cache-hit Filter Baseline Cache-hit Cache-hit Filter

Filter + TPBuf Filter Filter + TPBuf Filter Filter + TPBuf Filter

astar 46.0% 7.2% 5.5% 49.0% 9.8% 8.2% 53.8% 11.2% 9.2%
bwaves 89.6% 42.7% 41.8% 87.4% 51.8% 51.6% 88.7% 53.1% 52.5%
bzip2 43.3% 12.3% 9.3% 69.7% 21.0% 19.7% 85.8% 28.0% 22.3%
dealII 40.4% 0.7% 0.2% 18.0% 0.5% 0.7% 22.6% 0.9% 1.3%

gamess 25.9% 1.5% 1.4% 53.3% 2.2% 1.4% 61.4% 2.5% 1.7%
gcc 23.3% 2.6% 1.8% 25.2% 3.9% 2.7% 25.8% 4.4% 3.0%

GemsFDTD 32.6% 0.6% 0.6% 44.6% 0.5% 0.3% 53.1% -0.2% -0.6%
gobmk 36.0% 2.2% 1.2% 36.2% 3.7% 1.8% 40.4% 4.2% 2.0%

gromacs 43.7% 4.6% 5.5% 52.6% 7.8% 5.8% 55.4% 9.0% 7.0%
h264ref 19.5% 0.5% 0.1% 31.0% 0.7% 0.3% 37.7% 0.7% 0.3%
hmmer 109.4% 1.2% 1.1% 127.7% 1.7% 1.6% 156.0% 3.7% 3.6%

lbm 72.3% 47.8% 0.7% 74.4% 53.3% 1.1% 73.1% 47.8% 1.1%
leslie3d 45.6% 16.6% 12.9% 40.0% 21.6% 14.8% 38.0% 19.0% 13.1%

libquantum 38.7% 10.4% 10.4% 25.5% 13.4% 13.4% 26.7% 14.2% 13.8%
mcf 16.0% 13.5% 3.6% 24.0% 19.7% 4.7% 25.1% 23.1% 5.0%
milc 35.6% 21.7% 10.4% 31.9% 23.9% 8.7% 32.0% 24.1% 10.1%
namd 37.7% 1.2% 0.6% 42.3% 1.4% 0.7% 50.0% 1.5% 0.8%

omnetpp 22.4% 8.4% 8.4% 52.5% 40.2% 40.0% 62.5% 45.8% 44.9%
sjeng 30.0% 0.4% 0.2% 32.2% 0.2% 0.2% 35.1% 0.3% 0.2%
soplex 2.6% 0.1% 0.1% 2.3% 0.2% 0.2% 3.1% 0.2% 0.2%

sphinx3 49.2% 4.2% 2.5% 52.4% 8.4% 5.3% 58.4% 8.8% 5.5%
zeusmp 44.1% 42.5% 14.4% 46.7% 45.9% 14.9% 47.1% 46.4% 15.0%
Average 41.1% 11.0% 6.0% 46.3% 15.1% 9.0% 51.4% 15.9% 9.6%

V4-like configuration for server processor. First, for our
proposed three mechanisms, the same trend can be observed
for different processor platforms. Secondly, as processors
become more complex, the performance overhead of our
mechanisms has increased to a certain extent. For Cache
Hit Filter + TPBuf filter, the performance loss on A57-like
processor platform is 6% and 9.6% on Xeon platform.

E. Hardware Overhead Evaluation

The security dependence matrix is implemented at
Register-Transfer Level (RTL). Based on SMIC 40nm tech-
nology, we use Synopsys ASIC design flow and tools to
assess the timing and area cost for such matrix and related
control logic. For the issue queue with 64 entries, the
additional area occupied by this matrix is 0.05mm2 on
average, which is only 3.5% of a 4-way 32KB Cache.
Synthesizing with TT corner using Design Compiler, the
timing of the critical path is only increased by 1.4%.

In the implementation of Cache-hit Filter, the RTL level
modification is marginal, as it only needs to check the safe
flag.

For the TPBuf implementation, TPBuf is placed close
to the Load Store Queue (LSQ) and its entries have a
1:1 mapping with the entries of LSQ. The additional area
occupied by TPBuf is 0.00079mm2 on average, which is
about 0.055% of a 4-way 32KB Cache. Compared to the
complexity of store-load forwarding and ordering-failure

detection in LSQ, TPBuf only involves PPN address com-
parison logic and does not introduce new critical paths.

VII. DISCUSSION

A. Secure Update for Cache Replacement Logic

It should be noted that speculative accesses that hit
L1 DCache under Conditional Speculation may still leak
information via updating the cache replacement metadata
(e,g, LRU bits) speculatively. Such kind of leakage might be
exploited by adversaries [31], [32]. For example, an attacker
can train the LRU bits of given sets, then carefully induce
the victim to change the LRU bits speculatively, then figure
out which sets have been accessed, and finally infer sensitive
data.

To prevent such attacks, we propose a no update policy.
This policy skips LRU updates for speculative accesses that
hit L1 DCache. For speculative accesses that eventually
become non-speculative, not updating LRU bits can diminish
the effectiveness of L1 DCache replacement policy. To
understand the performance implication of this policy, we
have evaluated it on top of Cache-hit Filter + TPBuf Filter
using the same set of benchmarks in Figure 5. The results
show that it introduces 0.71% performance degradation.

We have also evaluated a delayed update policy that sets
a pending LRU update tag when a speculative accesses hit
L1 DCache and performs the actual LRU update when the
access reaches the head of the LSQ (i.e., becomes non-
speculative) and the corresponding LRU array is not being

used by accesses from the load/store pipelines. For the same
set of benchmarks in Figure 5, our experiments show that
this policy improves no update policy by 0.26%. Considering
the complexity of this policy, we believe that no update
policy is the better option due to its simplicity. Further
optimization of no update policy is possible where every
bit of performance is desired and is part of future work.

B. Extend Conditional Speculation beyond DCache Side
Channel

As explained in our threat model, this paper aims at a large
class of Spectre attacks which rely on the shared memory to
construct the cache side channel between the attacker and the
victim. However, the microarchitecture states are far beyond
cache contents, which can also include physical registers,
various queues, TLB and ICache etc. Any other future
unknown side channel might be fundamentally different
from all the known side channels; hence, we do not argue
that our defense method can effectively cope with all the
unknown covert channels. It is worth pointing out that this
is a good research problem. We need to combine the idea
of Conditional Speculation with new kind of dedicated filter
for the new side channel.

One case study is the extension to ICache based side
channel. The Conditional Speculation plus similar ICache-
hit filter can be applied to ICache based side channel. As
long as there is a unresolved branch instruction in pipeline,
the NPC (next PC) in fetch stage is marked as unsafe status.
If the requests of the unsafe NPCs hit in L1 ICache, the
instructions will be fetched to pipeline. Otherwise the ICache
access will be stalled until its preceding security-dependent
branch instructions are resolved. It is one of our ongoing
work to evaluate its performance impact of ICache-hit filter.

VIII. RELATED WORK

Software-based Mitigations: LFENCE instruction can be
employed to mitigate speculative load operations in critical
sensitive gadgets [33]. Furthermore, oo7 is proposed as bina-
ry analysis framework to check and fix code snippets using
less fences [34]. In term of V2, Intel has provided many
microcode updates to prevent speculative execution side
channel. IBRS and IBPB are proposed to avoid the malicious
branch training in same or different logic processors [13].
SMEP can be used to prevent speculative execution from
user to kernel, thereby avoiding observing kernel data. As
for V4, SSBD stalls speculative loads before calculating the
addresses of older stores. Retpoline, proposed by Google,
can transfer indirect branch and jump to secure return oper-
ations and stall aggressive memory accesses [12]. It is noted
that software-based mitigations need code modification and
recompilation. Furthermore, V1.1 and V1.2 can bypass the
LFENCE defense [4], [35]. As a comparison, this paper
focuses on the microarchitecture design innovations against
the major variants of Spectre.

Hardware-based Mitigations: SafeSpec holds specula-
tive refilled data for caches and TLBs in shadow struc-
tures [36]. When the instructions turn to be safe, the
data will be moved to architectural caches. However the
current SafeSpec does not consider cache coherence, it
cannot defense the attacks employing store operations in
multithreaded workloads, such as SpectrePrime. InvisiSpec
proposes speculative buffer to store speculative refilled data,
which employs the similar principle [37]. And it also pro-
vides delicate mechanisms to handle cache coherence and
consistency. Different from their perspective of undoing the
micro-architecture changes caused by mis-speculation, our
work firstly propose the concept of security dependence,
and our design philosophy is to speculatively execute safe
instructions to maintain the performance benefits of out-of-
order execution while blocking unsafe speculative accesses
for security consideration. Therefore, SafeSpec and InvisiS-
pec are naturally orthogonal to our approach, and can be
combined together for further performance improvement.

Cache Side-Channel Defenses: Existing cache side-
channel defenses can be classified into two categories: noise
interfere and resource partition. Typical noise interferes con-
tain fuzzing time, random address mapping and obfuscating
program critical etc [38], [39], [31]. Resource partition has
two primary methods: cache partition and time partition.
Since cache partition is usually based on last-level cache,
Spectre attacks still have the possibility to steal secrets [40],
[41], [42], [43]. Time partition eliminates the time difference
of memory access but it can’t prevent attacker speculatively
load sensitive information [44], [45]. In essence, Conditional
Speculation can cooperate with existing cache side-channel
defenses.

IX. CONCLUSION

Speculative execution vulnerabilities have become a seri-
ous security threat to commodity computers because spec-
ulative execution is one of the fundamental optimization
technology in high performance processors. Conditional
Speculation is a software transparent and effective hardware
based mechanism to mitigate existing Spectre attacks.

Similar to Data Dependence and Control Dependence,
we first propose the concept of Security Dependence. This
new dependence aims at recognizing the speculative instruc-
tions which have potential risk to leak micro-architecture
information. Security Hazard Detection is introduced in
the Issue Queue to identify unsafe speculation instructions
based on security dependence. Once the security hazards
in speculative execution are confirmed to be unsafe, they
will be terminated and discarded via leveraging existing re-
execution and speculation recovery mechanisms.

Simply blocking speculative memory accesses severely
downgrades the performance. With the goal of pursuing a
balance of performance and security, two filtering mecha-
nisms are investigated to figure out false security hazard-

s. The proposed Cache-hit Filter aims at the speculative
instructions which hit the cache. Since their speculative
execution will not change cache (content), they are safe.
And TPBuf Filter identifies safe speculative instructions
from another perspective. For our targeted Spectre variants
that use the shared memory based cache side channel and
steal memory page information, their speculative execution
of malicious gadgets have a common feature named as
S-Pattern. TPBuf Filter is designed to capture S-Pattern
from all speculative executions. For any speculative executed
memory instruction, it is considered as safe if it does not
match the S-Pattern. With safe instructions being allowed
to execute speculatively as normal, Conditional Speculation
remains the performance benefits of speculative execution.

We evaluate the mechanism of Conditional Speculation in
terms of performance, security and area. The results show
that the hardware overhead is marginal and the performance
overhead is minimal.

ACKNOWLEDGMENT

This work was supported by National Science Foundation
of China for Excellent Young Scholars under grant No.
61522212, and the Strategic Priority Research Program
of Chinese Academy of Sciences under grant No. XD-
C02000000. We would like to thank Prof Michael C. Huang
for his help in paper writing. We thanks Prof Peng Liu
for polishing this paper. And we appreciate the technical
discussions with Fengkai Yuan, Wei Song, Wenhao Wang
and Xiaoxin Li. We also wish to thank the anonymous
reviewers for their valuable comments and suggestions.

REFERENCES

[1] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” arXiv
preprint arXiv:1801.01203, 2018.

[2] P. Z. Jann Horn, “Reading privileged memory with
a side-channel,” https://cryptome.org/2018/01/spectre-
meltdown.pdf, 2018.

[3] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown,” arXiv preprint arXiv:1801.01207, 2018.

[4] C. Cowan, F. Wagle, C. Pu, S. Beattie, and J. Walpole, “Buffer
overflows: Attacks and defenses for the vulnerability of the
decade,” in DARPA Information Survivability Conference and
Exposition, 2000. DISCEX’00. Proceedings, vol. 2. IEEE,
2000, pp. 119–129.

[5] C. Trippel, D. Lustig, and M. Martonosi, “Meltdown-
Prime and SpectrePrime: Automatically-Synthesized Attacks
Exploiting Invalidation-Based Coherence Protocols,” arXiv
preprint arXiv:1802.03802, 2018.

[6] M. Hill, “A Primer on the Meltdown & Spectre Hardware
Security Design Flaws and their Important Implications,”
Computer Architecture Today, 2018.

[7] R. B. S. S. T. S. Mark D.Hill, Paul Kocher, “On the Implica-
tions of the Meltdown & Spectre Design Flaws,” ISCA 2018
Panel, 2018.

[8] Intel, “Intel analysis of speculative execution side channels,”
https://newsroom.intel.com/wp-content/uploads/sites/11/
2018/01/Intel-Analysis-of-Speculative-Execution-Side-
Channels.pdf, 2018.

[9] AMD, “Software techniques for managing speculation on
amd processors,” https://developer.amd.com/wp-content/
resources/Managing-Speculation-on-AMD-Processors.pdf,
2018.

[10] A. Technology, “Speculative store bypass disable,” https:
//developer.amd.com/wp-content/resources/124441 AMD64
SpeculativeStoreBypassDisable Whitepaper final.pdf, 2018-
05-21.

[11] R. Grisenthwaite, “Cache speculation side-channels,”
https://armkeil.blob.core.windows.net/developer/Files/pdf/
Cache Speculation Side-channels.pdf, 2018.

[12] P. Turner, “Retpoline: a software construct for preventing
branch-target-injection,” https://www.reddit.com/r/cpp/
comments/7o3oad/retpoline a software construct for
preventing/, 2018.

[13] Intel, “Retpoline: A branch target injection mitigation,”
https://software.intel.com/sites/default/files/managed/1d/46/
Retpoline-A-Branch-Target-Injection-Mitigation.pdf, 2018.

[14] D. Gruss, M. Lipp, M. Schwarz, R. Fellner, C. Maurice, and
S. Mangard, “Kaslr is dead: long live kaslr,” in International
Symposium on Engineering Secure Software and Systems.
Springer, 2017, pp. 161–176.

[15] G. Chen, S. Chen, Y. Xiao, Y. Zhang, Z. Lin, and T. H. Lai,
“SGXPECTRE Attacks: Leaking Enclave Secrets via Specu-
lative Execution,” arXiv preprint arXiv:1802.09085, 2018.

[16] G. Maisuradze and C. Rossow, “Speculose: Analyzing the
Security Implications of Speculative Execution in CPUs,”
arXiv preprint arXiv:1801.04084, 2018.

[17] D. Gullasch, E. Bangerter, and S. Krenn, “Cache games–
Bringing access-based cache attacks on AES to practice,” in
2011 IEEE Symposium on Security and Privacy (SP). IEEE,
2011, pp. 490–505.

[18] Y. Yarom and K. Falkner, “FLUSH+RELOAD: a high reso-
lution, low noise, L3 cache side-channel attack,” in Usenix
Conference on Security Symposium, 2014, pp. 719–732.

[19] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-
level cache side-channel attacks are practical,” in 2015 IEEE
Symposium on Security and Privacy (SP). IEEE, 2015, pp.
605–622.

[20] D. Gruss, R. Spreitzer, and S. Mangard, “Cache Template At-
tacks: Automating Attacks on Inclusive Last-Level Caches.”
in USENIX Security Symposium, 2015, pp. 897–912.

[21] D. Gruss, C. Maurice, and K. Wagner, “Flush+Flush: A
Stealthier Last-Level Cache Attack,” Computer Science, 2015.

https://cryptome.org/2018/01/spectre-meltdown.pdf
https://cryptome.org/2018/01/spectre-meltdown.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://newsroom.intel.com/wp-content/uploads/sites/11/2018/01/Intel-Analysis-of-Speculative-Execution-Side-Channels.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://developer.amd.com/wp-content/resources/124441_AMD64_SpeculativeStoreBypassDisable_Whitepaper_final.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/Cache_Speculation_Side-channels.pdf
https://armkeil.blob.core.windows.net/developer/Files/pdf/Cache_Speculation_Side-channels.pdf
https://www.reddit.com/r/cpp/comments/7o3oad/retpoline_a_software_construct_for_preventing/
https://www.reddit.com/r/cpp/comments/7o3oad/retpoline_a_software_construct_for_preventing/
https://www.reddit.com/r/cpp/comments/7o3oad/retpoline_a_software_construct_for_preventing/
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf
https://software.intel.com/sites/default/files/managed/1d/46/Retpoline-A-Branch-Target-Injection-Mitigation.pdf

[22] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” in Cryptographers Track
at the RSA Conference. Springer, 2006, pp. 1–20.

[23] C. Disselkoen, D. Kohlbrenner, L. Porter, and
D. Tullsen, “Prime+Abort: A Timer-Free High-Precision
L3 Cache Attack using Intel TSX,” in 26th
USENIX Security Symposium (USENIX Security 17).
Vancouver, BC: USENIX Association, 2017, pp. 51–
67. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/disselkoen

[24] Y. Yarom and K. Falkner, “Flush+reload: A high
resolution, low noise, l3 cache side-channel attack,” in
23rd USENIX Security Symposium (USENIX Security 14).
San Diego, CA: USENIX Association, 2014, pp. 719–
732. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/yarom

[25] swiat, “Fanalysis and mitigation of speculative store bypass,”
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-
and-mitigation-of-speculative-store-bypass-cve-2018-3639/,
2018.

[26] B. Sinharoy, J. Van Norstrand, R. J. Eickemeyer, H. Q.
Le, J. Leenstra, D. Q. Nguyen, B. Konigsburg, K. Ward,
M. Brown, J. E. Moreira et al., “IBM POWER8 processor
core microarchitecture,” IBM Journal of Research and De-
velopment, vol. 59, no. 1, pp. 2–1, 2015.

[27] M. Goshima, K. Nishino, T. Kitamura, Y. Nakashima,
S. Tomita, and S.-i. Mori, “A high-speed dynamic instruction
scheduling scheme for superscalar processors,” in Proceed-
ings of the 34th annual IEEE/ACM international symposium
on Microarchitecture. IEEE Computer Society, 2001, pp.
225–236.

[28] A. Henstrom, “Scheduling operations using a dependency
matrix,” Apr. 29 2003, uS Patent 6,557,095.

[29] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti
et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, 2011.

[30] J. L. Henning, “SPEC CPU2006 benchmark descriptions,”
ACM SIGARCH Computer Architecture News, vol. 34, no. 4,
pp. 1–17, 2006.

[31] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure
hierarchy-aware cache replacement policy (SHARP): De-
fending against cache-based side channel attacks,” in 2017
IEEE/ACM 44th Annual International Symposium on Com-
puter Architecture (ISCA). IEEE, 2017, pp. 347–360.

[32] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and
J. Emer, “DAWG: A Defense Against Cache Timing Attacks
in Speculative Execution Processors,” 2018.

[33] Intel, “Mitigation overview for potential side channel
cache exploits in linux,” https://software.intel.com/sites/
default/files/Intel Mitigation Overview for Potential Side-
Channel Cache Exploits Linux white paper.pdf, 2018.

[34] I. G. T. M. A. R. Guanhua Wang, Sudipta Chattopadhyay,
“oo7: Low-overhead Defense against Spectre Attacks via
Binary Analysis,” arXiv preprint arXiv:1807.05843, 2018.

[35] E. M. Koruyeh, K. Khasawneh, C. Song, and N. Abu-
Ghazaleh, “Spectre Returns! Speculation Attacks using the
Return Stack Buffer,” arXiv preprint arXiv:1807.07940, 2018.

[36] K. N. Khasawneh, E. M. Koruyeh, C. Song, D. Evtyushkin,
D. Ponomarev, and N. Abu-Ghazaleh, “SafeSpec: Banishing
the Spectre of a Meltdown with Leakage-Free Speculation,”
arXiv preprint arXiv:1806.05179, 2018.

[37] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher,
and J. Torrellas, “InvisiSpec: Making Speculative Execution
Invisible in the Cache Hierarchy,” in Proceedings of the
51th International Symposium on Microarchitecture, ser. MI-
CRO’18, 2018.

[38] F. Liu and R. B. Lee, “Random fill cache architecture,” in
Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society,
2014, pp. 203–215.

[39] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing Digital
Side-Channels through Obfuscated Execution.” in USENIX
Security Symposium, 2015, pp. 431–446.

[40] F. Liu, Q. Ge, Y. IEEE/ACM, F. Mckeen, C. Rozas, G. Heiser,
and R. B. Lee, “Catalyst: Defeating last-level cache side chan-
nel attacks in cloud computing,” in 2016 IEEE International
Symposium on High Performance Computer Architecture (H-
PCA). IEEE, 2016, pp. 406–418.

[41] Y. Wang, A. Ferraiuolo, D. Zhang, A. C. Myers, and G. E.
Suh, “SecDCP: secure dynamic cache partitioning for effi-
cient timing channel protection,” in Proceedings of the 53rd
Annual Design Automation Conference. ACM, 2016, p. 74.

[42] G. Taylor, P. Davies, and M. Farmwald, “The TLB slice-a
low-cost high-speed address translation mechanism,” in 17th
Annual International Symposium on Computer Architecture,
1990. Proceedings. IEEE, 1990, pp. 355–363.

[43] X. Zhang, S. Dwarkadas, and K. Shen, “Towards practical
page coloring-based multicore cache management,” in Pro-
ceedings of the 4th ACM European conference on Computer
systems. ACM, 2009, pp. 89–102.

[44] M. Godfrey and M. Zulkernine, “A server-side solution to
cache-based side-channel attacks in the cloud,” in 2013 IEEE
Sixth International Conference on Cloud Computing. IEEE,
2013, pp. 163–170.

[45] V. Varadarajan, T. Ristenpart, and M. M. Swift, “Scheduler-
based Defenses against Cross-VM Side-channels,” in USENIX
Security Symposium, 2014, pp. 687–702.

https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/disselkoen
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://blogs.technet.microsoft.com/srd/2018/05/21/analysis-and-mitigation-of-speculative-store-bypass-cve-2018-3639/
https://software.intel.com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-Channel_Cache_Exploits_Linux_white_paper.pdf
https://software.intel.com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-Channel_Cache_Exploits_Linux_white_paper.pdf
https://software.intel.com/sites/default/files/Intel_Mitigation_Overview_for_Potential_Side-Channel_Cache_Exploits_Linux_white_paper.pdf

	Introduction
	Understanding the Spectre attacks
	Induce victim to incorrect speculative execution path
	Construct a long time window for incorrect speculative execution
	Infer secrets from side-channel information leakages

	Threat Model
	Security Dependence and Defense Strategy
	Definition of Security Dependence
	Defense Strategy

	Conditional Speculation Mechanism
	Design Overview
	Security Hazard Detection in Issue Queue
	Cache-hit based Hazard Filter
	Trusted Pages Buffer based Hazard Filter

	Evaluation
	Methodology
	Security Analysis
	Performance Evaluation
	Sensitivity Analysis on the Complexity of Out-of-Order Core
	Hardware Overhead Evaluation

	Discussion
	Secure Update for Cache Replacement Logic
	Extend Conditional Speculation beyond DCache Side Channel

	Related Work
	Conclusion
	References

