Capturing and Obscuring Ping-Pong Patterns to
Mitigate Continuous Attacks

Kai Wang*, Fengkai Yuan', Rui Hou, Zhenzhou Ji*! and Dan Meng!
*Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
tState Key Laboratory of Information Security, Institute of Information Engineering, Beijing, China

Abstract—In this paper, we observed Continuous Attacks are
one kind of common side channel attack scenarios, where an
adversary frequently probes the same target cache lines in a
short time. Continuous Attacks cause target cache lines to go
through multiple load-evict processes, exhibiting Ping-Pong Pat-
terns. Identifying and obscuring Ping-Pong Patterns effectively
interferes with the attacker’s probe and mitigates Continuous
Attacks. Based on the observations, this paper proposes Ping-
Pong Regulator to identify multiple Ping-Pong Patterns and block
them with different strategies (Preload or Lock). The Preload
proactively loads target lines into the cache, causing the attacker
to mistakenly infer that the victim has accessed these lines; the
Lock fixes the attacked lines’ directory entries on the last level
cache directory until they are evicted out of caches, making an
attacker’s observation of the locked lines is always the L2 cache
miss. The experimental evaluation demonstrates that the Ping-
Pong Regulator efficiently identifies and secures attacked lines,
induces negligible performance impacts and storage overhead,
and does not require any software support.

Index Terms—security, side channel attacks, computer archi-
tecture, ping-pong regulator

I. INTRODUCTION

Cache Side Channel Attacks (CSCAs) observe the victim’s
cache access pattern to extract unauthorized security-critical
information [1]-[5]. Among CSCAs, cross-core CSCAs are
more dangerous as they not only are easier to be launched,
but also possess higher bandwidth and lower noise features.
This growing threat reveals the necessity to develop efficient
countermeasures to mitigate such attacks [6]-[8].

Continuous attacks are one common kind of scenarios of
cross-core CSCAs, where attackers frequently probe the target
cache lines in a short timing window. The root cause for the
attacks is that the attackers only extract limited information
from each iteration, during which they infer whether the
target cache lines are accessed by the victim. The informa-
tion inferred from one iteration is not enough to reconstruct
the cache access pattern essentially leaking the secret. For
instance, the attack proposed by Liu et al. [1] repeats at least
tens of thousands of iterations to recover a 3072-bit EIGamal
key. Therefore, Continuous Attacks are necessary for obtaining
complete information within the transient time window.

Under Continuous Attacks, the target cache lines including
secrets of victims usually migrate back and forth between
different cache (or memory) hierarchies, and we define such
kind of memory access traffics as Ping-Pong Patterns. During

J;Corresponding Author: Z. Ji (E-mail: jizhenzhou@hit.edu.cn)

iterations, an attacker first evicts the target lines to observe
cache access time differences (hits or misses) determined by
whether the victim accesses the lines. Continuous Attacks force
the target lines to frequently swap in and out of CPU chips
due to the attacker’s evictions and the victim’s accesses, thus
exhibiting Ping-Pong Patterns.

Ping-Pong Patterns can be either cache-memory or L2-LLC
(Last Level Cache). The former are migrations caused by
cache evictions (cache-to-memory traffic) and cache lines refill
(memory-to-cache traffic) [1], [3]. The latter are migrations
caused by L2 evictions (L2-to-LLC traffic due to L2 directory
conflicts) and cache lines refill (LLC-to-L2 traffic) [5].

Based on the above observations, we propose Ping-Pong
Regulator (PPR) to mitigate Continuous Attacks by capturing
Ping-Pong Patterns and obfuscating the probes launched by
attackers. Specifically, this paper makes the following contri-
butions:

1) We observe that the Ping-Pong Patterns are significant
under Continuous Attacks and thus propose exploiting them as
an effective indicator to countermeasure the attacks.

2) The micro-architecture design of Ping-Pong Regulator
(PPR) is introduced, and PPR is deployed in the LLC to count
the re-access number for each cache line. Upon reaching a
specified threshold, the cache line is considered to exhibit a
Ping-Pong Pattern.

3) Once capturing Ping-Pong Patterns, PPR launches two
defensive actions to obfuscate attackers probes: Preload ob-
scures cache-memory patterns by retrieving the attacked line
from memory to the cache, causing an attacker to incorrectly
infer the victim always accesses the line; Lock blocks the L2-
LLC pattern by pinning the attacked line’s directory entry to
the LLC directory', inducing an attacker to believe the victim
never accesses the line.

4) Our in-depth evaluation shows that PPR can mitigate
Continuous Attacks with negligible performance impacts and
storage overhead.

II. THREAT MODEL AND DESIGN GOALS

We focus on Continuous Attacks, a common cache side
channel attack scenario. Continuous Attacks contain an at-
tacker and a victim running on different physical cores (i.e.,
cross-core attacks). Without losing generality, they can be

!Only the directory entry of the attacked line is pinned to the LLC directory,
and the data is allowed to serve in L2 without introducing L2 directory
conflicts.

two virtual machines, processes or threads with or without
shared memory. The attacker can use any existing cache side
channel attack method (Flush + Reload [4], Prime + Probe
[1], etc.) to extract sensitive information in both inclusive and
non-inclusive LLC architectures. Besides, we trust underlying
operating systems.

The goal of this paper is to develop a feasible hardware
approach exploiting Ping-Pong Patterns of the attacked cache
lines to mitigate Continuous Attacks. The proposed solution
not only provides strong protection against Continuous At-
tacks but also has (1) general solutions for inclusive and
non-inclusive LLC architectures, (2) negligible performance
overheads with acceptable hardware cost, (3) no reliance on
any OS modification and software support.

III. PING-PONG REGULATOR

A. Design Overview

i
» LLC

[ata | Licmir | | pata | ticoic |

Fig. 1. One typical multi-core processor with non-inclusive caches and Ping-
Pong Regulator (PPR).

Continuous Attacks cause attacked cache lines to exhibit
Ping-Pong Patterns, i.e., they frequently experience the evict-
load process at multi-level caches or between caches and
memory. This paper proposes Ping-Pong Regulator (PPR) to
distinguish the cache lines that exhibit these patterns, and
trigger actions (Preload and Lock) on them to interfere with
the attacker’s probes thus mitigating Continuous Attacks.

In modern processors, L1 and L2 caches are generally
inclusive, while the LLC is inclusive or non-inclusive. Our
research takes the non-inclusive LLC as an example be-
cause this architecture exhibits all Ping-Pong Patterns (cache-
memory and L2-LLC) under Continuous attacks. In section
V we discuss how the solution works on the inclusive LLC
architecture.

Fig. 1 shows a classic non-inclusive LLC architecture. The
LLC is partitioned and physically distributed as multiple slices
(each core has one slice). Each slice contains LLC data, L2
directory and LLC directory structures. The regulator is pinned
to the directory structures in each slice to count the number of
re-accesses for each cache line. If the value reaches a specified
threshold, the corresponding cache line is considered to exhibit
a Ping-Pong Pattern. Deploying the regulator on the directory
is a good choice because such a position easily takes into
account cross-core memory access related traffics and monitors
all cache lines.

Once a cache line exhibiting Ping-Pong Patterns is captured,
a related action needs to be triggered to interfere with an

L2 Cache S\ L2 Cache
RN >

N
® ¢apture cache-memory
pfng-pong pattern

R
@ capture L2-LLC
Wping-pong pattern
2

&~

@ Preload @ LocK

Memory

(a) Preload

Fig. 2. Defensive actions.

Memory

(b) Lock

attacker’s probes on the line. Here we design Preload and Lock
to cope with cache-memory and L2-LLC Ping-Pong Patterns,
respectively.

1) Preload. As shown in Fig. 2(a), the Preload handles
the cache-memory Ping-Pong Pattern. This mechanism
actively retrieves the attacked lines back to the L2 cache.
Since the Preload causes the cache lines to migrate
to caches, the attacker can not determine whether the
victim has accessed these lines.

2) Lock. Fig. 2(b) shows that cache lines exhibiting an L2-
LLC ping-pong pattern are captured and locked by the
regulator. The locked lines’ directory entries are fixed
in the LLC directory without introducing L2 directory
conflicts any more. The attacker’s probes on L2 cache
misses are unable to obtain any information.

B. Micro-architecture implementation

Ping-Pong Regulator (PPR) is used to capture abnormal traf-
fics and proactively obscure the traffics, preventing attackers
from probing target cache lines. The corresponding PPR needs
to be added to each slice of the LLC. Each PPR contains three
portions, an extension of the L2 directory, an extension of the
LLC directory, and a regulator directory.

The regulator directory is based on an SRAM implemen-
tation. When a cache line is evicted from the cache, the
corresponding directory entry along with re-access informa-
tion is migrated to the regulator directory and is stored in
the corresponding set according to the cache line’s physical
address. If the set suffers a conflict, the replacement policy
will choose an entry to discard.

Fig. 3 depicts the micro-architectural implementation of
PPR. The Ping-Pong Number (PPNumber) flag is used to
count the number of re-accesses per cache line, thereby recog-
nizing L2-LLC and cache-memory ping-pong mode accesses.
The flag exists in the above three directory structures, but it
migrates as the cache line moves, and is valid at most in one
part at the same time. For example, when a cache line is in
the L2 cache, the PPNumber, Protect, and Access flags are in
the extension portion of the L2 directory. These flags (plus the
L2DirConflict flag) are stored in the extension portion of the
LLC directory when the cache line is available in the LLC.
When a cache line is written back from the cache to memory,
the PPNumber flag and the line’s address tag are stored in the
regulator directory. The PPNumber is updated and migrated
according to the following rules:

1) When a request hits the L1 or L2 cache, the correspond-
ing L2 directory entry does not migrate and the extension flags
do not change.

Incoming Address

Tag | Set Index

Address “oheren
(dfss Sharer (US;C €2 PPNumber Protect Access

L >

|

(a) L2 extended directory
Incoming Address

Tag | Set Index

Addrsss Sha‘_e‘_(olslearence PPNumber Protect Access L2DirConflict

Tag tate

(b) LLC extended directory

Secure from store

Incoming Address

Set Index Set Index

1 0
Arbiter

Is_store

Threshold

Tz w

(c) Regulator directory

Fig. 3. PPR micro-architecture.

2) When a request has an L2 cache miss and hits the LLC,
the corresponding LLC directory entry will migrate to the L2
directory. The PPNumber and L2DirConflict flags of the entry
will be checked out, and the (1) is performed:

PPNumber = PPNumber + L2DirCon flict (1)

The L2DirConflict flag indicates whether a cache line migrates
to the LLC due to L2 directory conflicts, and if so, the value
is 1. Besides, L2 cache replacements also make the cache line

move from the L2 cache to the LLC, but the L2DirConflict
is 0. The L2-LLC access pattern is caused by L2 directory
conflicts and re-accesses [5]. Therefore, only when a cache
line with L2DirConflict of 1 is accessed, PPR thinks it as an
abnormal access, and the PPNumber increases.

3) When a request does not hit both L2 and LLC caches,
if the regulator directory records the corresponding cache line
address, it means that this is a cache-memory re-access, and
the PPNumber value needs to increase by 1. Then, according
to the address that needs to be refilled, a new entry needs to
be allocated in the L2 directory, and the updated PPNumber
value is recorded in the extension portion of the entry, and
the Access and Protect flags are initialized to 0. Conversely,
if the regulator directory does not record the address, an L2
directory entry needs to be populated with the PPNumber and
other extension flags initialized to O.

4) When a cache line is replaced from the L2 (by clflush)
or LLC to memory, the PPNumber value needs to be updated
and migrated to the regulator directory. The update rule (2) is
performed:

PPNumber = PPNumber — Protect + Access (2)

The Protect flag value of 1 indicates the cache line is preloaded
to cache by an obscuring preload operation. The Access flag
indicates whether the preloaded cache line was accessed before
it left cache hierarchies, if accessed, the flag is set to 1.

As a directory entry migrates among directories, its PP-
Number gradually increases. The threshold of PPNumber we
used in the evaluation was 1, 2, and 3. However, we design
a 3-bit PPNumber flag to support a larger threshold range. If
the value reaches the threshold, the corresponding obscuring
actions are triggered. The specific action depends on where
the entry is currently located after the migration.

Preload. If the entry is in the regulator directory, this means
that cache-memory Ping-Pong Pattern has occurred, and the
obfuscation required is Preload. For simplicity, the existing
cache preload mechanism can be reused, and PPR sends the
preload request to the preload queue of the cache. The choice
of preload timing also deserves considerations. On one hand,
it must be longer than the memory access latency. Otherwise,
preload and write back operations on the same line may
compete for memory bandwidth. On the other hand, it should
be shorter than an attacker’s eviction interval to ensure that
this action can interfere with the attacker.

Lock. If the entry is available in the LLC directory, this
means that the L2-cache Ping-Pong Pattern has occurred, and
the obscuring action is Lock. The lock only pins the directory
entry of the attacked line to the LLC directory, and the line
can still sever in private caches without triggering L2 directory
conflicts. The locked line still follows the cache replacement
policy and can be evicted out of caches.

IV. EVALUATION

A. Methodology

We implemented the PPR mechanism based on gem5 [9], a
cycle-accurate full-system simulator. The gem5 is configured

to model a multi-core processor, and the default parameters
are shown in Table I. The logically shared non-inclusive LLC
cache is physically distributed into as many slices as cores.

TABLE I
SIMULATOR CONFIGURATION.

Baseline Parameters
4 cores at 2.0 GHz, using MOESI
Private, 32 KB, 8-way, 2 cycles

Architecture
Inclusive L1I/L1D

Inclusive L2

Private, 1 MB/core, 16-way, 18 cycles
Shared, 1.5 MB/slice, 12-way, 35 cycles

Non-inclusive L3

Directory L2 Directory: 1024 sets, 16-way
(per slice) L3 Directory: 2048 sets, 12-way
DRAM 250-cycle latency

Ping-Pong Regulator Parameters
Regulator directory (2048 sets, 6-way)/slice
PPNumber threshold 3
200 cycles

Preload time

A typical attack is designed for security analysis. The victim
and attacker processes run on different physical cores. The
victim executes the Square-and-Multiply algorithm in RSA
encryption. The algorithm iterates over secure keys from high
to low. For each bit, it executes square-multiply operations
if its value is 1. Otherwise, it performs an square operation.
Obtaining the victim’s access sequence can extract the keys.
The attacker implements both Flush + Reload and Prime
+ Probe methods to extract the victim’s access sequence,
which leads to cache-memory and L2-LLC Ping-Pong Patterns,
respectively.

The PARSEC and mixes of SPEC CPU 2006 with simlarge
and reference input sizes respectively are used for performance
evaluation on our proposed PPR. These SPEC benchmarks
can be divided into high, middle and low cache miss rates
[10]. Based on the above classification, we meticulously pick
2 workloads for each mix to cover all possible combinations.
When running mixes on 4 cores, we run 2 copies of each
application and assign them to different cores. For each work-
load, we use a representative slice of one billion instructions
and record its execution time in full-system gem5 mode. Our
baseline is the case which turns off the PPR mechanism, and
all results are normalized to the given baseline.

B. Security Analysis

1) Defending Against the cache-memory Ping-pong Pat-
tern: The first scenario exploits Flush + Reload. The attacker
maps the victim’s executable file into his virtual address space
to build shared memory regions. The granularity of the probe
operated by the attacker is 3000 cycles. In each probe phase,
the attacker first uses the clflush instruction to evict two target
lines out of caches. Then the victim continues its execution.
After that, the attacker loads them back. According to the
access time difference, the attacker can sense the execution
path of the victim and thus infer the secret. These sets of
operations cause on-chip traffics to exhibit the cache-memory
Ping-Pong Pattern.

Fig. 4(a) shows the results in the baseline. A highlighted
square represents a cache hit when the attacker loads the probe
addresses. The pattern of the victim’s accesses to execute the
square and multiply (Fig. 4 top and bottom lines) leads to
information leakage. When a multiply follows a square, the
value of the bit in the secret key is 1. Otherwise, the value
is 0. Fig 4(b) depicts the results with PPR. The regulator
successfully captures the patterns and retrieves the attacked
lines back to caches in advance. In this case, every load of the
attacker will hit in the cache. Therefore, the attacker can not
obtain any useful information.

2) Defending Against the L2-LLC Ping-Pong Pattern:
The second scenario uses Prime + Probe. The attacker first
constructs two eviction sets and then probes the victim at the
granularity of 5000 cycles. In each probe phase, the attacker
uses the eviction sets to make L2 directory conflicts, causing
two target lines to be evicted from the L2 cache to the LLC.
Then, the attacker re-accesses the eviction sets. If, in between,
the victim accessed the target lines, cache lines of the eviction
sets are evicted from L2 to LLC due to L2 directory conflicts,
leading to L2 cache misses of the attacker. These sets of
operations cause on-chip traffics to exhibit the L2-LLC Ping-
Pong Pattern.

In Fig. 5(a), the highlighted square represents the result that
re-accessing the eviction set experiences L2 misses. Appar-
ently, the attacker obtains the victim’s square and multiply
(Fig. 5 top and bottom lines) access patterns and translates
them into keys. When the architecture equipped with PPR,
the lock pins the attacked lines’ directory entries to the LLC
directory. After that, the victim’s accesses do not migrate the
directory entry to the L2 directory and thus no longer cause L.2
directory conflicts. As shown in Fig. 5(b), the L2-LLC pattern
is eliminated (keeping blank) and the attacker’s re-accesses
always hit in the L2 cache (no L2 misses). Hence, there will
be no information leakage.

C. Performance Evaluation

Fig. 6(a) shows the performance impacts of PPR mech-
anism. The results are normalized to the baseline and the
lower is better. Across all workloads, cannel sees the max
improvement (3.1%), while sjeng_libquantum faces the max
degradation (1.5%). Overall, PPR results in a 0.09% perfor-
mance improvement on average.

For most workloads, the performance impacts of PPR is
negligible. It is because PPR has only a small number of
false positives. Fig. 6(b) depicts the number of false positives
(false locks and false preloads) in one million instructions per
workload. Cannel triggers the most false positives (the number
is 884). The number of false positives for most workloads is
less than 30, which indicates that the extra cache operations
introduced by PPR does not consume much bandwidth and
has a little impact on performance.

To further understand the performance overhead of PPR,
Fig. 6(c) illustrates the L3 misses per kilo instruction (MPKI).
Intuitively, a smaller value of MPKI means better performance.

Square -

Multiply 4

T T T T T T T
2040 2050 2060 2070 2080 2090 2100

Time Slot Number

(b) Baseline with PPR

T T T T
2000 2010 2020 2030

Fig. 4. Cache usage patterns of probe addresses extracted by the attacker in Flush + Reload.

Square{ mm mmlals In o mmm = EE = EE EHN
[L}
Infer Keys 1op gt
2 [[}
Multiple 4 L j ¢ 8, m = u L LI L L
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100
Time Slot Number
(a) Baseline without PPR
Suare{ EEE EE E EEE EE :l:l:l:l EEE I@II EE =m
Inferkeys § 1 0 1 lo)
x [|
Multiply = m] ", mE, E " . L]

T T T T T T T T
2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Time Slot Number

(a) Baseline without PPR

Square -

Multiply
2000

T T T T T T
2040 2050 2060 2070 2080 2090

Time Slot Number

(b) Baseline with PPR

T T T
2010 2020 2030 2100

Fig. 5. Cache usage patterns of probe addresses extracted by the attacker in Prime + Probe.

65.65

1.031

17.43

)

Normalized Execution Time
=)

False Positives per million instructions

6
097 4
21 0001 || 055
096 0 =
S SR SR RDE S PP PSS E S YT
& 2 3 DI T TIPS S 'S%é“e
TR ET NG B o S @b@ﬁ&y PR
¥ &
m Baseline

(a) Normalized Execution Time

(b) Number of false positives with PPR

g101
g
S 1
=099
7.34]
5.65 EOVQS
H
097
097 -
0 0.060.07 0
| 096
P & & > PP PP X DPPE PSS g
P E P S E \& FEL L L FS PSS EE S F
P ST T YT S S S

= PPR
(c) Normalized L3 MPKI

Fig. 6. Normalized performance of PPR for SPEC mixes and PARSEC.

Some workloads expose the impacts of PPR more than oth-
ers. Bzip2_calculix is an exception. Its execution time has
decreased, but the MPKI increases. Although PPR causes more
cache misses, more requests hit the L2 cache due to preload.
The latter accounts for more than the former and therefore
improves performance.

D. Sensitivity analysis

Size of regulator directory. The capacity of the regulator
directory reflects the number of cache lines that can be pro-
tected simultaneously. The larger size of the regulator directory
brings much better security. However, people might have
concerns about its performance overhead due to possible more
false positives. We evaluated three different configurations (6
ways/2048 sets, 12 ways/2048 sets, and 24 ways/2048 sets),
and found the performance loss are all less than 0.1%. Such
results demonstrate the larger regulator directory does not have
a significant performance overhead.

Ping-Pong Number threshold. Lower thresholds might
introduce more false positives. For example, when the thresh-
old decreases from 3 to 1, the false positives of the mix of
bzip2_calculix in every million instructions increase from 41
to 110. Although false positives have grown nearly twice, the
base is still small and therefore has little impacts on perfor-
mance. With different thresholds (3, 2, and 1), the average
performance loss of all workloads is around 0.1%. However,
we still suggest to carefully select the value of the threshold,
especially when running memory-intensive programs.

Preload time. We evaluated different preload time (200
cycles, 300 cycles, 400 cycles). As the preload time increases,
the average slowdown of all workloads is around 0.1%.
Therefore, we recommend that the preload time choice to be
as small as possible if the memory bandwidth competition is
not severe.

E. Storage and Area Overhead

We compute the storage and area required by an LLC
slice of the baseline architecture with and without PPR. The
parameters of each structure are in Table I. PPR adds 5 bits (3-
bit PPNumber, 1-bit Protect and 1-bit Access) and 6 bits (3-bit
PPNumber, 1-bit Protect, 1-bit Access, 1-bit L2DirConflict) to
each entry of the L2 and LLC directories, respectively. PPR
also requires a regulator directory. Each entry in the regulator
directory contains an address tag and a PPNumber flag, and
each set is assigned a 10-bit preload timer. The area overhead
estimation is given by CACTI 7 using 22 nm technology [11].
Overall, PPR requires an additional 78.5KB storage overhead
per slice, which is 4.5% more than the baseline architecture.
Also, the total area added to each slice is 0.07 mm?2, which is
equivalent to 4.01% of the baseline.

V. DISCUSSION

Defeating Continuous Attacks on Inclusive Caches. On
the inclusive LLC architecture, the attacked cache lines only
exhibit the cache-memory Ping-Pong Pattern. To mitigate
Continuous Attacks, PPR requires even slighter extensions to

count re-access values just for cache-memory patterns and only
summons Preload when capturing the patterns.

Defending against defense-aware Adversaries In the regu-
lator directory, the location of an entry is statically determined
by the cache line’s physical address (the set index bits). A
defense-aware adversary can evict the entry by crafting a
group of addresses mapping to the same set. If an attacked
cache line’s entry is evicted from the regulator directory
overwhelmingly fast, its critical re-access value is discarded
and the defense cannot be activated. In response to this
situation, our future work is to introduce a dynamic remapping
mechanism that changes the mapping relationship between
physical addresses and locations in the regulator directory.
Periodically changing keys ensures uncertainty in this mapping
relationship, making it impossible for an attacker to form an
eviction set within a limited time. The mechanism can be
accomplished by adding encryption and decryption hardware
modules in the regulator directory, inspired by [12].

VI. RELATED WORK

Many approaches have been proposed to defeat cache side
channel attacks and they can be broadly divided into two
categories, partition and randomization.

Partition. Partition relies on reserving cache space for
sensitive data of the victim, making it harder for the attacker
to evict and probe the data. Catalyst [6] uses Cache Allocation
Technology to assign security-sensitive data to reserved cache
ways. SecDCP [13] dynamically changes the partition size
corresponding to the demands of each application.

Randomization. Randomization aims to introduce noise to
victims’ execution to make it hard for attackers to distinguish
cache usage patterns. RPcache [7] utilizes a permutation table
to remap a cache line to a new set. CacheGuard [14] defends
against attacks by capturing and breaking cache abnormal
traffics. However, it incurs unacceptable storage overhead.
CEASER [12] uses the encryption module to translate the
physical address into an encrypted address and accesses the
cache with this translated address. SHARP [15] avoids evicting
a cache line in the LLC that is available in L1 or L2 cache.

PPR is different from the above approaches. PPR mitigates
Continuous Attacks by identifying and obscuring Ping-Pong
Patterns. This is a general countermeasure on inclusive and
non-inclusive LLC architectures. Furthermore, our solution is
a pure hardware design and does not need any OS/software
modifications.

VII. CONCLUSION

This paper finds that Continuous Attacks are a common
cross-core cache side channel attack scenario and observes that
the attacked cache line usually exhibits Ping-Pong Patterns in
such attacks. Capturing and obscuring Ping-Pong Patterns can
effectively interfere with an attacker’s observation of the target
cache line, mitigating Continuous Attacks. Based on the above
observations, this paper proposes Ping-Pong Regulator. The
regulator is deployed to the LLC slice to capture Ping-Pong
Patterns and obscure them with two defensive actions (Preload

and Lock), making it impossible for attackers to extract the
victim’s cache usage pattern. Using the full-system simulator
gem5, our work presents the implementation of Ping-Pong
Regulator. The evaluation indicates that our solution can
effectively defend against Continuous Attacks only introducing
a negligible performance impact and hardware overhead.

VIII. ACKNOWLEDGMENT

This work was supported by the National Natural Sci-
ence Foundation of China under grant No.61472100 and the
Strategic Priority Research Program of Chinese Academy of
Sciences under grant No.XDC02010000. We also thank the
reviewers for their valuable comments and suggestions.

REFERENCES

[1] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. Lee, “Last-level cache side-
channel attacks are practical,” In 2015 IEEE Symposium on Security
and Privacy, pp. 605-622, IEEE, 2015.

[2] Y. Zhang, A. Juels, M. Reiter, and T. Ristenpart, “Cross-vm side
channels and their use to extract private keys,” In Proceedings of the
2012 ACM conference on Computer and communications security, pp.
305-316, ACM, 2012.

[3] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a fast
and stealthy cache attack,” In International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, pp. 279-299,
Springer, 2016.

[4] Y. Yarom and K. Falkner. “Flush+ reload: a high resolution, low noise,
13 cache side-channel attack,” In 23rd USENIX Security Symposium,
pp. 719-732, 2014.

[5] M. Yan, R. Sprabery, B. Gopireddy, C. Fletcher, R. Campbell, and J.
Torrellas, “Attack directories, not caches: Side channel attacks in a non-
inclusive world,” In 2019 IEEE symposium on security and privacy,
IEEE, 2019.

[6] F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R.
Lee, “Catalyst: Defeating last-level cache side channel attacks in cloud
computing,” In Proceedings of 22nd HPCA, pp. 406-418, IEEE, 2016.

[71 Z. Wang and R. Lee, “New cache designs for thwarting software cache-
based side channel attacks,” ACM SIGARCH Computer Architecture
News, 35(2):494-505, 2007.

[8] D. Meng, R. Hou, G. Shi, B. Tu, A. Yu, Z. Zhu, et al, “Security-first
architecture: deploying physically isolated active security processors for
safeguarding the future of computing,” Cybersecurity, 2018.1.5, 1(2):
1-12.

[9] N. Binkert, B. Beckmann, G. Black, S. Reinhardt, A. Saidi, A. Basu,
et al., “The gem5 simulator,” ACM SIGARCH Computer Architecture
News, 39(2):1-7, 2011.

[10] A. Jaleel, E. Borch, M. Bhandaru, Steely J., and J. Emer, “Achieving
noninclusive cache performance with inclusive caches: Temporal locality
aware (tla) cache management policies,” In Proceedings of 43rd MICRO,
pp. 151-162, IEEE Computer Society, 2010.

[11] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New tools for interconnect exploration in
innovative off-chip memories,” ACM Transactions on Architecture and
Code Optimization (TACO), 2017.

[12] M. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” In proceedings of 51st MICRO, pp.
775-787, IEEE, 2018.

[13] Y. Wang, A. Ferraiuolo, D. Zhang, A. Myers, and G. Suh, “Secdcp: se-
cure dynamic cache partitioning for efficient timing channel protection,”
In Proceedings of the 53rd Annual Design Automation Conference, pp.
74, ACM, 2016. Security symposium, pp. 189-204, 2012.

[14] K. Wang, F. Yuan, R. Hou, J. Lin, Z. Ji, and D. Meng, “Cacheguard: a
security-enhanced directory architecture against continuous attacks,” In
Proceedings of the 16th ACM International Conference on Computing
Frontiers, pp. 3241, ACM, 2019.

[15] M. Yan, B. Gopireddy, T. Shull, and J. Torrellas, “Secure hierarchy-
aware cache replacement policy (SHARP): Defending against cache-
based side channel attacks,” In Proceedings of 44th ISCA, pp. 347-360.
IEEE, 2017.

